Groups about $\mathrm{Be}(\mathrm{III}), \mathrm{Be}(\mathrm{IV})$, and $\mathrm{Be}(\mathrm{V})$ atoms are the final bits of inter-rod 'glue' encountered along $\langle 111\rangle$ directions before diverging rods leave large ($5 \cdot 4 \AA$ diameter) holes centered at sites such as $0,0,0$ and $1,1,1$. Some indication of the manner in which these groups interlock with the rod structure may be seen in Fig. 4.

Hole configuration

The large inter-rod holes are relatively isolated from one another. They are surrounded by the square bases of $\mathrm{Ca}(\mathrm{II}) \mathrm{O}_{6}$ groups in $\langle 100\rangle$ directions, by the prism sides of $\mathrm{Ca}(\mathrm{I}) \mathrm{O}_{8}$ groups in $\langle 110\rangle$ directions, and by triangular faces of $\mathrm{Be}(\mathrm{IV}) \mathrm{O}_{4}$ and $\mathrm{Be}(\mathrm{V}) \mathrm{O}_{3}$ groups in $\langle 111\rangle$ directions. The shortest path between them is through a $\mathrm{Ca}(\mathrm{I}) \mathrm{O}_{8}$ group; a more devious path lies through a $\mathrm{Be}(\mathrm{V}) \mathrm{O}_{3}$ group, into $\mathrm{a} \frac{3}{4}, \frac{3}{4}, \frac{3}{4}$ pocket, and into an adjoining large hole through another $\mathrm{Be}(\mathrm{V}) \mathrm{O}_{3}$ group.

Structural obstacles along either path would seem to dictate low interhole diffusion rates for large guest atoms or molecules. This has been tentatively verified by repeated failures in attempts to introduce argon into the holes by treating calcium beryllate in a $2400-$ lb.in ${ }^{-2}$ argon atmosphere at 500 to $550^{\circ} \mathrm{C}$ for periods up to 18 hr . Diffusion rates may be higher for small atoms or molecules (He or H_{2}), and the possible entrapment of guest atoms during formation of calcium beryllate is worth investigation.

The authors are indebted to R.A.Potter of the Metals and Ceramics Division of the Oak Ridge National Laboratory for his aid in obtaining single crystals of calcium beryllate and to H.A.Levy and R.D. Ellison of the Chemistry Division for their assistance in programming calculations. We also thank G.W.Clark of the Metals and Ceramics Division who provided facilities for and participated in the gas-entrapment experiments.

References

Ader, M. \& Bingle, J. (1956). Argonne National Laboratory, Chemical Engineering Div. Quart. Progr. Rep. April-Juni, p. 106.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). A Fortran Crystallographic Least-Squares Program. Oak Ridge National Laboratory, Tennessee. ORNL TM-305.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). A Fortran Crystallographic Function and Error Program. Oak Ridge National Laboratory, Tennessee. ORNL TM-306.
Cromer, D. T. \& Waber, J. T. (1964). Los Alamos Scientific Laboratory, New Mexico. LA-3056.
Farrell, E. F., Fang, J. H. \& Newnham, R. E. (1963). Amer. Min. 48, 804.
Harris, L. A., Potter, R. A. \& Yakel, H. L. (1962). Acta Cryst. 15, 615.
Howells, E. R., Phillips, D. C. \& Rogers, D. (1949). Research, 2, 338.
Howells, E. R., Phillips, D. C. \& Rogers, D. (1950). Acta Cryst. 3, 210.
Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Marezio, M., Plettinger, H. A. \& Zachariasen, W. H. (1963). Acta Cryst. 16, 390.

Pauling, L. \& Shappell, M. D. (1930). Z. Kristallogr. 75, 128.

Pavlov, P. V. \& Belov, N. V. (1960). Soviet Phys., Crystallography, 4, 300.
Potter, R. A. \& Harris, L. A. (1962). J. Amer. Ceram. Soc. 45, 615.
Smith, D. K., Newkirk, H. W. \& Kahn, J. S. (1964). J. Electrochem. Soc. 111, 78.

Smith, D. K., Cline, C. F. \& Austerman, S. B. (1964). U.C.R.L. 7539, Rev. 1.

Warren, B. E. (1930). Z. Kristallogr. 74, 131.
Wilson, A. J. C. (1942). Nature, Lond. 150, 152.

The Crystal Structure of Bavenite

By E. Cannillo and A. Coda
Sez. VI del Centro di Cristallografia del C.N.R., Istituto di Mineralogia dell'Università di Pavia, Italy
and G.Fagnani*
Istituto di Mineralogia dell'Università di Milano, Italy
(Received 17 May 1965)
Bavenite, a silicate containing aluminum, beryllium, calcium and hydrogen, is orthorhombic, with space group $C m c m, Z=4, a=23 \cdot 19, b=5 \cdot 005, c=19 \cdot 39 \AA$. Its crystal structure has been solved from a three-dimensional Patterson synthesis. Final bond lengths and angles were determined from coordinates obtained by the least-squares method applied to three-dimensional data (final over-all R value: 6.6%. Bavenite displays a framework-like structure in which the dominant motif is a fourfold chain of linked tetrahedra running parallel to \mathbf{b}. The diadochy between aluminum, tetrahedrally coordinated, and beryllium is discussed. The positions of the hydrogen atoms have been determined and an improved chemical formula has been derived, i.e. $\mathrm{Ca}_{4}(\mathrm{BeOH})_{2+x} \mathrm{Al}_{2-x} \mathrm{Si}_{9} \mathrm{O}_{26-x}$, where $0 \cdot 10 \leq x \leq 0 \cdot 84$.

Introduction

Bavenite is a silicate containing aluminum, beryllium and calcium, always found in a tardomagmatic en-

* G.F. carried out the differential thermal analysis of bavenite, contributing to the arrangement of the chemical formula.
vironment. After some discussion it has been recognized as orthorhombic. Its probable space group is reported as Cmcm and slightly varying lattice constants have been found by different authors who handled different specimens (Berry, 1963). It often occurs in
plates normal to [100], elongated following [010], very narrow in the [001] direction. The cleavages are $\{001\}$ very good, $\{100\}$ good. The chemical analyses were discussed by Berry (1963), who suggested

$$
\begin{aligned}
& \mathrm{H}_{x} \mathrm{Ca}_{4} \mathrm{Be}_{2+x} \mathrm{Al}_{2-x} \mathrm{Si}_{9} \mathrm{O}_{27} \cdot n \mathrm{H}_{2} \mathrm{O} \\
& \quad(0 \cdot 10 \leq x \leq 0 \cdot 84 ; \quad n=1 \cdot 08)
\end{aligned}
$$

as the correct chemical formula.

Experimental

Chemical formula

One of us (G.F.) carried out a differential thermal analysis of bavenite. This showed that the latter loses water only at 950° with decomposition, and the chemical formula can therefore perhaps better be written

$$
\mathrm{H}_{2+x} \mathrm{Ca}_{4} \mathrm{Be}_{2+x} \mathrm{Al}_{2-x} \mathrm{Si}_{9} \mathrm{O}_{28}(0 \cdot 10 \leq x \leq 0 \cdot 84)
$$

The reported chemical formula, with this minor variation, was assumed to be correct, without making a new analysis; the results of the crystal structure determination were consistent with all the assumptions made. Our specimens from Baveno had an atomic ratio $\mathrm{Al}: \mathrm{Be} \simeq 1 \cdot 9: 2 \cdot 1$.

Lattice constants

The lattice constants were determined at room temperature by measuring the 2θ-values of appropriate reflexions for each of the constants to be determined, and extrapolating the corresponding interplanar distances, plotted against $\frac{1}{2}\left(\frac{\cos ^{2} \theta}{\sin \theta}+\frac{\cos ^{2} \theta}{\theta}\right)$, to $2 \theta=180^{\circ}$.

The measurements were made with a Wooster singlecrystal diffractometer. The values so obtained are as follows:

$$
\begin{aligned}
& a=23 \cdot 19 \pm 0 \cdot 02 \AA \\
& b=5 \cdot 005 \pm 0 \cdot 009 \\
& c=19 \cdot 39 \pm 0 \cdot 02 \\
& U=2250 \cdot 5 \AA^{3} \\
& \text { Space group: } \mathrm{Cmcm} ; \quad Z=4 .
\end{aligned}
$$

Recording of intensities

An approximate crystal structure was determined from Weissenberg and precession intensities from two crystals not very suitable for refinement work; actually the Patterson and first Fourier maps were accomplished with the use of this first recording. When a better bavenite specimen became available, a new and more accurate recording of intensities was made for refinement purposes. The following discussion is concerned with this latter recording.

The specimen was a narrow plate elongated in the \mathbf{b} direction. Its dimensions along a and \mathbf{c} were respectively 0.065 mm and 0.049 mm .

The crystal was mounted about the b axis, and Weissenberg equi-inclination integrating and non-integrating photographs were obtained for reciprocal lattice levels from $k=0$ to $k=4$, using nickel-filtered copper
radiation and the multiple-film technique. The integration range was adjusted to correct for the spot contraction at the higher levels; this correction did not cover a few reflexions elongated rather than contracted on the side of the 'contraction effect' (130, 131, 240, 241, 041).

A total of 1162 independent reflexions out of the 1361 present in the $\mathrm{Cu} K \alpha_{1}$ limiting sphere (85%) was inspected; 66 did not give observable blackening on the films.

Measurement of the intensities

The highest intensities ($I_{\text {obs }}>750$, on the absolute scale) were measured on the integrated films with a Nonius microdensitometer and the lowest (one fourth of the whole) were visually estimated by comparison of the non-integrated spots with a calibration strip recorded with a suitable bavenite reflexion. Only an octant of the $\mathrm{Cu} K \alpha$ limiting sphere was examined.

Correction and scaling of intensities

The intensities were corrected for Lorentz-polarization and absorption factors, elongation of some spots, and incipient but incomplete $\alpha_{1}-\alpha_{2}$ spot doubling. A secondary extinction correction and a correction to all the visual readings were applied at an advanced stage of the refinement (see Refinement).

A modification of Albrecht's method (Smith, 1959) was applied for the absorption correction; the linear absorption coefficient of bavenite is $\mu=143 \mathrm{~cm} .^{-1}$ for $\mathrm{Cu} K \alpha$ and the transmission factors varied from 0.32 to $0 \cdot 57$. The elongation of some spots, listed above, was corrected approximately by an estimate of the relative areas of the spots. The correction suggested by Sakurai (1962) was applied for the $\alpha_{1}-\alpha_{2}$ splitting effect, with the replacement of Y for θ (Buerger's notation) in the interpolation formula.

The intensities for the different levels were on approximately the same scale owing to the similar exposure times. At first they were separately placed upon an absolute scale by Wilson's method; after each struc-ture-factor calculation, the scale was improved by the criterion $\Sigma F_{o}=\Sigma F_{c}$, applied separately to each level.

Structure analysis

Patterson sections were computed at $v=0, v=\frac{1}{4}$ and $v=\frac{1}{8}$; only the first is reported here (Fig. 1); it is equivalent to the section at $v=\frac{1}{2}$ with the origin translated by $a / 2$ along the u axis.

A model of the arrangement of the cations was constructed on the basis of these considerations:
(1) Owing to the diadochy between Al and Be , it is very probable that the Al atoms resemble the Be and Si atoms in being tetrahedrally coordinated.
(2) The ratio between the numbers of tetrahedrally coordinated atoms (T atoms) and the oxygen atoms is 13:28, which strongly suggests a three-dimensional framework for bavenite.
(3) The Patterson section at $v=\frac{1}{2}$ shows a peak at (u, w) $=\left(\frac{1}{15}, 0\right)$ corresponding to a distance of $3 \AA$; this peak, labelled P in Fig. 1 (referred to $v=\frac{1}{2}$), and the translation $b=5.005 \AA$ are consistent with the existence of pyroxene-like chains along [010] with T atoms lying on the plane (001).
(4) The very short b unit translation forbids superimpositions of atoms along [010] in one unit cell, and greatly limits the possibilities of multiple occupation of special positions.
(5) The Patterson section at $v=0$ is a Harker section (Fig. 1); in particular, since the maximum M_{1} with coordinates $\left(u_{0}, w_{0}\right)$ related to those of $M_{2}\left(u_{0}, 0\right)$ and M_{3} $\left(0, w_{0}\right)$, is very high, it is probably due to $\mathrm{Ca}-\mathrm{Ca}$ distances, with $u_{0}=2 x_{C a}$ and $w_{0}=\frac{1}{2}-2 z_{C a}$.
(6) Many maxima of the above Patterson section can be arranged in pairs pseudo-centrosymmetrically with

Fig. 1. Patterson section normal to [010]; $v=0$. Contours are drawn at equal but arbitrary levels of density. The Patterson section at $v=\frac{1}{2}$ is obtained by translating the origin by $a / 2$ along the u axis. M_{1}, M_{2}, M_{3} : maxima related to the vectors $\mathrm{Ca}-\mathrm{Ca} ; M_{1}{ }^{\prime}, M_{2}{ }^{\prime}, M_{3}{ }^{\prime}$: maxima related to the preceding ones by a pseudocenter of inversion at $(u, w)=\left(\frac{1}{4}, \frac{1}{4}\right) ; P$: maximum that is related in the section $v=\frac{1}{2}$ to distances between tetrahedrally coordinated cations within chains running parallel to \mathbf{b}.

Fig.2. Plot of $\ln I_{c} / I_{o}$ against $I_{c} \cdot 10^{-3}$ for the 102 most intense reflexions, before correction for the secondary extinction effect. The inclined straight line was obtained by the leastsquares method applied to the equation $\ln I_{c} / I_{o}=\varepsilon I_{c}+\varepsilon^{\prime}$. It will be seen that ε^{\prime} is quite low; the number of reflexions taken into consideration is therefore high enough.
respect to $(u, w)=\left(\frac{1}{4}, \frac{1}{4}\right)$. This is consistent, in this space group, with distances between equivalent atoms at $y=$ $\frac{1}{4}$ or $y=\frac{3}{4}$. The maxima labelled M can be correlated in this way with those labelled M^{\prime}. The y coordinates of the calcium atoms are therefore probably near to $\frac{1}{4}$ and $\frac{3}{4}$.

The construction of the model started from the calcium atoms which were arranged in general positions as suggested by (5) and (6), and with four equivalent silicon atoms disposed at (c) (International Tables notation), with symmetry mm , this last requirement being imposed by the fact that the unit cell contains 36 silicon atoms, while the multiplicities of the general positions are 16 and those of the special positions are 8 and 4. These were labelled $T(1)$. In Fig. $3(f)$ one sixteenth of the unit cell is roughly schematized to show the only symmetry elements of interest in this discussion. In accordance with (2), $T(2)$ and $T(3)$ were placed on mirror planes at (\dot{g}) and (f) respectively; testing of the distances $\mathrm{Ca}-T(1), \mathrm{Ca}-T(3)$ and $\mathrm{Ca}-T(2)$ on the Patterson sections was successful for the first two, but negative for $\mathrm{Ca}-T(2)$, suggesting therefore that $T(2)=$ Be. Following (4), the positions on the mirror planes were considered to be fully occupied and those on binary axes were first tested seeking for distances between Ca and T atoms on diads; so $T(4)$ and $T(5)$ were found at $y=0$ and $y=\frac{1}{2}$ respectively, or vice versa, developing a chain"along [010] as stated in (3). Following (4) again, the remaining sixteen T atoms should lie on a general position, $T(6)$, whose coordinates are suggested by Fig. $3(f)$ in view of completing the connection of the T atoms in a six-membered ring. $T(6)$ is near to the b glide plane, so developing a new chain along [010] similar to that just described.

The correctness of the model was well verified by an electron density projection along [010] performed with the signs given by the cations only; it gave the approximate x and z oxygen coordinates. The approximate y coordinates of the T atoms were established during the search for the $\mathrm{Ca}-T$ vectors on the Patterson sections and by spatial considerations. Those of the oxygen atoms were found paying attention to the tetrahedral coordination of the T atoms and to the connection between these tetrahedra and the calcium coordination polyhedron, which must comply with the third Pauling's rule.

A structure factor calculation with the above coordinates gave an overall R value of $0.30(R=$ $\left.\Sigma\left|\left|F_{o}\right|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|\right)$.

Refinement and assessment of accuracy

The method of least squares was applied in order to minimize the unweighted differences $F_{o}-F_{c}$. The calculations were carried out on an Elea 6001 digital computer with a program that takes into account the full matrix; the structure factors were derived starting from the atomic scattering factors obtained from Moore's (1963) constants. At first six cycles were accomplished
assuming an isotropic temperature factor for each atom; the progress of the refinement was indicated by a fall in the R value from 0.300 to 0.099 .

At this stage the F_{o} 's corresponding to the visual readings were separately compared with the F_{c} 's and an overestimating factor of $1 \cdot 22$ was found; since this value appeared to be independent of the level under
consideration, it was explained as a systematic error in the scaling between the integrated and the nonintegrated films, and its reciprocal was applied as a correction to all the visual readings.

Moreover a plot of $\ln I_{c} / I_{o}$ against I_{c} for the 102 most intense reflexions pointed out a conspicuous secondary extinction effect (Fig.2). A search for correl-

Table 1. Atomic coordinates and their standard deviations
(fractional standard deviations in parentheses)

Atom	x / a	y / b	z / c	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$
Ca	0.0842 (1)	$0 \cdot 2425(4)$	$0 \cdot 1524(1)$	0.0023 A	0.0020 §	$0.0019 \AA$
T (1)	0.0000	$0 \cdot 7802(5)$	$0 \cdot 2500$		0.0025	
$T(2)=\mathrm{Be}$	$0 \cdot 1252(4)$	$0 \cdot 8218(25)$	$0 \cdot 2500$	$0 \cdot 0093$	0.0125	
T (3)	0.0000	$0 \cdot 7227$ (5)	0.1047(1)		$0 \cdot 0025$	$0 \cdot 0019$
$T(4)=\mathrm{Al}$	0.0958(1)	0.5000	0.0000	0.0023		
T (5)	$0 \cdot 1704(1)$	0.0000	0.0000	0.0023		
T (6)	0.2141(1)	0.8539(5)	$0 \cdot 1428(1)$	0.0023	0.0025	0.0019
$\mathrm{O}(1)$	$0 \cdot 0000$	$0.5769(11)$	$0 \cdot 1830$ (2)		0.0055	0.0039
$\mathrm{O}(2)$	0.0000	0.0302(10)	$0 \cdot 1139(2)$		0.0050	0.0039
$\mathrm{O}(3)$	$0 \cdot 0572(2)$	$0 \cdot 5976(14)$	$0.0718(2)$	0.0046	0.0070	0.0039
$\mathrm{O}(4)$	$0 \cdot 1314(2)$	0.2298(13)	$0.0361(2)$	0.0046	0.0065	0.0039
$\mathrm{O}(5)$	0.2081(2)	$0 \cdot 8636(13)$	$0 \cdot 0598(2)$	0.0046	0.0065	0.0039
O(6)	$0 \cdot 2337(2)$	$0 \cdot 5575(12)$	$0 \cdot 1646(2)$	0.0046	$0 \cdot 0060$	0.0039
O(7)	$0 \cdot 1547(2)$	$0 \cdot 9245(12)$	$0 \cdot 1799(2)$	$0 \cdot 0046$	$0 \cdot 0060$	0.0039
$\mathrm{O}(8)$	$0 \cdot 1211(2)$	$0 \cdot 4868(13)$	$0 \cdot 2500$	0.0046	0.0065	
$\mathrm{O}(9)$	$0 \cdot 0586(2)$	0.9504(12)	$0 \cdot 2500$	$0 \cdot 0046$	$0 \cdot 0060$	

Fig. 3. The crystal structure of bavenite. (a) Projection along b of the whole unit cell and its surroundings. (b) and (c) Projections along a of cell slabs defined by $\Delta a(\mathrm{II})$ and $\Delta a(\mathrm{I})$ respectively; note the lengths of the projection sides. (d) and (e) Projections along \mathbf{c} of cell slabs defined by $\Delta c(\mathrm{I})$ and Δc (II) respectively; note the lengths of the projection sides. (f) Projection of one sixteenth of the unit cell and key to the identification of the atoms; the symmetry elements of interest are roughly schematized.
ation between this effect and the θ angle or the crystal shape (Hamilton, 1957) did not give significant results. A linear relation between $\ln I_{c} / I_{o}$ and I_{c} was assumed and a least-squares secondary extinction coefficient derived. This was applied as a correction to all the F_{o} 's through the formula $\left(F_{o}\right)_{c o r r}=\left(F_{o}\right)_{e x t} . \exp \left(\frac{1}{2} \varepsilon I_{c}\right)$, where $\varepsilon=2 \cdot 47.10^{-6}$.

The above corrections lowered the R value to $0 \cdot 074$. Two anisotropic least-squares cycles followed. At this point the refinement was considered complete. The final R value for $1162 F_{h k l}$ reflexions, including the unobserved ones, was $0 \cdot 066$.

The atomic parameters and their standard deviations (Cruickshank, 1949) are listed in Table 1. The

Table 2. Analysis of anisotropic thermal parameters: root mean square thermal vibrations along the ellipsoid axes (\AA), magnitudes of the principal axes $\left(\AA^{2}\right)$ and angles $\left({ }^{\circ}\right)$ between the crystallographic axes and the principal axes of the vibration ellipsoids

Atom Ca	r.m.s.	B_{i}	α	β	γ
	$0 \cdot 12$	1.08	0	90	90
	$0 \cdot 15$	1.70	90	7	83
T (1)	$0 \cdot 11$	0.89	90	83	173
	$0 \cdot 10$	0.75	90	90	0
	$0 \cdot 12$	$1 \cdot 17$	90	0	90
$T(2)=\mathrm{Be}$	$0 \cdot 07$	0.43	0	90	90
	$0 \cdot 12$	1.05	112	22	90
	$0 \cdot 16$	2.07	22	68	90
$T(3)$	$0 \cdot 11$	0.90	90	90	0
	$0 \cdot 10$	$0 \cdot 86$	0	90	90
	$0 \cdot 13$	1.36	90	0	90
$T(4)=\mathrm{Al}$	$0 \cdot 09$	$0 \cdot 60$	90	90	0
	$0 \cdot 10$	$0 \cdot 86$	0	90	90
	$0 \cdot 13$	$1 \cdot 28$	90	2	88
T (5)	$0 \cdot 10$	0.75	90	88	178
	0.09	0.64	0	90	90
	$0 \cdot 14$	1.47	90	3	87
$T(6)$	0.09	$0 \cdot 60$	90	87	177
	$0 \cdot 09$	$0 \cdot 64$	6	84	90
	$0 \cdot 12$	$1 \cdot 10$	96	6	90
O(1)	$0 \cdot 09$	0.60	90	90	0
	$0 \cdot 10$	$0 \cdot 85$	90	55	145
	$0 \cdot 13$	1.29	0	90	90
$\mathrm{O}(2)$	0.08	$0 \cdot 56$	90	35	55
	$0 \cdot 13$	1.29	0	90	90
	$0 \cdot 15$	1.90	90	0	90
O(3)	$0 \cdot 11$	1.05	90	90	0
	$0 \cdot 14$	1.56	132	57	121
	$0 \cdot 16$	$2 \cdot 04$	57	34	80
$\mathrm{O}(4)$	$0 \cdot 10$	$0 \cdot 82$	121	80	33
	0.12	$1 \cdot 18$	137	52	106
	$0 \cdot 15$	$1 \cdot 71$	58	38	71
O(5)	$0 \cdot 11$	0.95	65	85	154
	$0 \cdot 12$	$1 \cdot 07$	113	70	31
	$0 \cdot 14$	1.60	65	27	99
$\mathrm{O}(6)$	$0 \cdot 11$	$0 \cdot 94$	145	73	119
	$0 \cdot 11$	1.04	120	75	146
	$0 \cdot 15$	1.68	93	19	71
$\mathrm{O}(7)$	$0 \cdot 10$	$0 \cdot 80$	30	79	118
	0.12	1.06	41	87	49
	$0 \cdot 13$	1.43	110	28	72
O(8)	$0 \cdot 11$	0.96	56	62	133
	$0 \cdot 13$	$1 \cdot 31$	107	17	90
	$0 \cdot 14$	$1 \cdot 50$	90	90	0
O(9)	$0 \cdot 10$	$0 \cdot 82$	17	73	90
	$0 \cdot 11$	0.94	85	4	90
	$0 \cdot 12$	$1 \cdot 20$	90	90	0
	0.09	$0 \cdot 64$	175	85	90

anisotropic thermal parameters are shown in Table 2. The observed and calculated structure factors are compared in Table 3.

Discussion

Interatomic distances and angles are presented in Table 4, as well as their standard deviations (Ahmed \& Cruickshank, 1953; Darlow, 1960). Reference has to be made to Fig. $3(f)$ in order to identify the labelled atoms.

Identification of the tetrahedral cations

$T(1), T(3), T(5)$ and $T(6)$ were readily identified as silicon atoms, on the basis of their average distances from the surrounding oxygen atoms ($1 \cdot 626,1 \cdot 608,1 \cdot 613$ and $1.614 \AA$ respectively) and of their numbers of electrons, which were estimated to be approximately $12 \cdot 1,11 \cdot 3,12 \cdot 2$ and $11 \cdot 8$ by integration of the threedimensional Fourier maxima. $T(2)$ has about 1.8 electrons and was therefore identified as beryllium; the average $T(2)-\mathrm{O}$ distance $(1 \cdot 641 \AA)$ is consistent with this assumption. Finally, the average $T(4)-\mathrm{O}$ distance ($1.729 \AA$) was decisive for recognizing $T(4)$ as aluminum; this atom had 11.2 electrons.

Distances and coordination polyhedra

The Al-O distances are remarkably short; the Al-Be diadochy can account in part for this feature, as the $\mathrm{Be}: \mathrm{Al}$ ratio slightly exceeds the theoretical ratio of $1: 1$.

The $T-\mathrm{O}$ distances of the tetrahedra $T(2)(=\mathrm{Be})$ and $T(3)(=\mathrm{Si})$ are somewhat irregular; attention has to be paid to the fact that both these tetrahedra correspond to the only interruptions in the three-dimensional framework of tetrahedra, on $\mathrm{O}(8)$ and $\mathrm{O}(2)$ respectively [Fig. $3(f)$]. The distance $T(2)-\mathrm{O}(8)$ is quite long, while the distance $T(3)-\mathrm{O}(2)$ is shorter than any other $T-\mathrm{O}$ distance. According to the chemical formula suggested by Berry, one atom of hydrogen accompanies every atom of beryllium, and it is likely to be linked to $O(8)$, since without the hydrogen, this would point towards an empty domain and would have a lower coordination number than the other oxygen atoms of this tetrahedron. It is true that these last features are the same for O (2) relatively to $T(3)$; however, one atom of hydrogen linked to $O(2)$ would increase the positive charge around the latter excessively (Table 5), which is not consistent at all with the noticeable shortness of the distances of $\mathrm{O}(2)$ from the positive atoms linked to it, i.e. $T(3)$ and Ca .
$\mathrm{Ca}-\mathrm{O}$ distances are shown in Table 4 in order of increasing length. The six shortest $\mathrm{Ca}-\mathrm{O}$ distances vary between 2.34 and $2.51 \AA$; the next longest distance, $\mathrm{Ca}-\mathrm{O}(1)$, differs from the preceding one by nearly $0 \cdot 13 \AA$. There is a weak electrostatic interaction between Ca and $\mathrm{O}(1)$ because $\mathrm{O}(1)$ is screened by the other oxygen atoms. Therefore the coordination number of calcium can be taken as 6 , excluding $\mathrm{O}(1)$, or as $6+1$. Its coordination polyhedron resembles a trigonal prism with bases $\mathrm{O}(2) \mathrm{O}(3) \mathrm{O}(4)$ and $\mathrm{O}(7) \mathrm{O}(8) \mathrm{O}(9)$, but it is

Table 3. Structure factors of bavenite
Reflexions marked with a dot were unobservably weak; in this case $F_{\text {obs }}$ derives from $0.5 I_{\text {min }}$. Some reflexions are not tabulated here; they are 11 reflexions cut off at high θ angles, and 10 reflexions trapped by the direct beam stop. Furthermore the 127 h 5 l and 51 h 6 l reflexions, out of the equiinclination range, are not taken into consideration.

notably twisted and distorted. It shares no edge with silicon tetrahedra; it shares one edge $\overline{[O(7) O(9)}=2.61$
\AA] with the beryllium tetrahedron, a second $[\overline{\mathrm{O}(3) \mathrm{O}(4)}$ $=2.61 \AA$] with the aluminum tetrahedron, and a third $[\mathrm{O}(8) \mathrm{O}(9)=3.05 \AA]$ with another calcium polyhedron. Moreover it shares only corners $[\mathrm{O}(2), \mathrm{O}(3), \mathrm{O}(4), \mathrm{O}(7)$ and $\mathrm{O}(9)$] with five silicon tetrahedra, one $[\mathrm{O}(8)]$ with a beryllium tetrahedron and one $[\mathrm{O}(2)]$ with a calcium polyhedron.

Although bavenite is a calcium silicate, it does not belong to the class of silicates named second 'chapter' by Belov (1961). In fact the calcium coordination polyhedron is not an octahedron, and the lengths of its edges vary over a large interval, approximately between $2 \cdot 5$ and $4 \cdot 5 \AA$. Occasionally 'diortho groups' $\left(\mathrm{Si}_{2} \mathrm{O}_{7}^{6-}\right)$ adapt themselves to the larger edges, but in a random way. Here the flexibility of the silicate chains, claimed by Belov, is not sufficient to allow calcium to assume a regular octahedral coordination.

Table 4. Interatomic distances (\AA), angles $\left({ }^{\circ}\right)$ and their standard deviations (in brackets)
The distances and angles preceded by an asterisk occur twice

Atoms	Bond length	Mean	Atoms	Angle	Mean
$T(1) \mathrm{O}(1)$	* 1.650 (5)		$\mathrm{O}(1) T(1) \mathrm{O}(9)$	** 109•1(1)	
$T(1) \mathrm{O}(9)$	* 1.603(5)	1.626	$\mathrm{O}(1) T(1) \mathrm{O}\left(1^{\prime}\right)$	103.9(5)	109.4
			$\left.\mathrm{O}(9) T(1) \mathrm{O} 9^{\prime}\right)$	115-8(6)	
T(2)O(7)	* 1.606(7)		$\mathrm{O}(7) T(2) \mathrm{O}(8)$	* 110•1(5)	
T (2) O (8)	$1.679(14)$		$\mathrm{O}(7) T(2) \mathrm{O}(9)$	* 105.7(5)	
$T(2) \mathrm{O}(9)$	1.673(11)	$1 \cdot 641$	$\mathrm{O}(8) T(2) \mathrm{O}(9)$	$109 \cdot 4(6)$	$109 \cdot 4$
			$\mathrm{O}(7) T(2) \mathrm{O}\left(7^{\prime}\right)$	$115 \cdot 6(1 \cdot 4)$	
T(3)O(1)	$1.684(4)$		$\mathrm{O}(1) T(3) \mathrm{O}(3)$	* 100.9(2)	
$T(3) \mathrm{O}(3)$	$1.599(5)$		$\mathrm{O}(3) T(3) \mathrm{O}\left(3^{\prime}\right)$	+112-1(6)]	
$T(3) \mathrm{O}(2)$	* 1.549(5)	$1 \cdot 608$	$\mathrm{O}(2) T(3) \mathrm{O}(3)$	* 115.8(3)	$109 \cdot 1$
			$\mathrm{O}(1) T(3) \mathrm{O}(2)$	$109 \cdot 1(3)$	
$T(4) \mathrm{O}(3)$	* $1.725(4)$		$\mathrm{O}(3) T(4) \mathrm{O}(4)$	* 98.2(2)】	
$T(4) \mathrm{O}(4)$	* 17732(6)	1.729	$\mathrm{O}(4) T(4) \mathrm{O}\left(4^{\prime}\right)$	123-1(5)	
			$\mathrm{O}(3) T(4) \mathrm{O}\left(3^{\prime}\right)$	117.5(5)]	
			$\mathrm{O}(3) T(4) \mathrm{O}\left(4^{\prime}\right)$	* 110.6(3)	$109 \cdot 7$
T(5)O(4)	* 1.621(5)		$\mathrm{O}(4) T(5) \mathrm{O}\left(4^{\prime}\right)$	112.2(6)	
$T(5) \mathrm{O}(5)$	* 1.604(4)	$1 \cdot 613$	$\mathrm{O}(5) T(5) \mathrm{O}\left(5^{\prime}\right)$	$114.0(5)$	
			$\mathrm{O}(4) T(5) \mathrm{O} 5$)	* 107•1(2)	
			$\left.\mathrm{O}(4) T(5) \mathrm{O} 5^{\prime}\right)$	* 108.4(2)	109.5
T(6) $\mathrm{O}(6)$	1-608(6)		$\mathrm{O}(5) T(6) \mathrm{O}(6)$	$108.3(3)$	
$T(6) \mathrm{O}\left(6^{\prime}\right)$	$1 \cdot 638(6)$		$\mathrm{O}(5) T(6) \mathrm{O} \mathbf{6}^{\prime}$	$107 \cdot 6(3)$	
$T(6) \mathrm{O}(5)$	$1 \cdot 616(4)$		$\mathrm{O}(5) T(6) \mathrm{O}(7)$	111.6 (3)	
$T(6) \mathrm{O}(7)$	1-593(5)	$1 \cdot 614$	$\left.\mathrm{O}(6) T(6) \mathrm{O} \mathbf{6}^{\prime}\right)$	107.3(6)	
			$\mathrm{O}(6) T(6) \mathrm{O} 7)$	109.3(3)	
			$\mathrm{O}(6) \mathrm{T}(6) \mathrm{O}(7)$	112.6(3)	109.5
$\mathrm{Ca} \mathrm{O}(7)$	2.343(6)				
$\mathrm{Ca} \mathrm{O}(2)$	2.344(3)				
$\bigcirc \mathrm{CaO}$	$2 \cdot 410$ (4)				
$\mathrm{Ca} \mathrm{O}(3)$	$2.448(6)$				
$\mathrm{Ca} \mathrm{O}(9)$	$2 \cdot 463$ (4)				
CaO (4)	$2 \cdot 507(4)$				
Ca O (1)	$2.639(4)$				
Ca O (6)	3.816(6)				
$\mathrm{Ca} \mathrm{O}(5)$	3.882(6)				
			$T(1) \mathrm{O}(1) T(3)$	116.3(3)	
			$\mathrm{CaO}(2) \mathrm{Ca}^{\prime}$	$112 \cdot 7(4)$	
			$\mathrm{CaO}(2) T(3)$	* 105-4(3)	
			$T(3) \mathrm{O}(3) T(4)$	$149 \cdot 6(3)$	
			$\mathrm{CaO}(3) T(4)$	$100 \cdot 2(3)$	
			$\mathrm{CaO}(3) T(3)$	$104.0(2)$	
			$T(4) \mathrm{O}(4) T(5)$	130.2(2)	
			T (4) $\mathrm{O}(4) \mathrm{Ca}$	97.8(2)	
			$T(5) \mathrm{O}(4) \mathrm{Ca}$	$130 \cdot 5(3)$	
			$T(5) \mathrm{O}(5) T(6)$	141.2(4)	
			$T(6) \mathrm{O}(6) T\left(6^{\prime}\right)$	$135 \cdot 6(6)$	
			$T(6) \mathrm{O}(7) T(2)$	$132 \cdot 8(5)$	
			$\mathrm{Ca} \mathrm{O}(7) T(2)$	96.5(4)	
			$\mathrm{CaO}(7) T(6)$	$130 \cdot 6(3)$	
			$\mathrm{CaO}(8) \mathrm{Ca}^{\prime}$	$103 \cdot 5(5)$	
			$\mathrm{CaO}(8) T(2)$	* 121.8(2)	
			CaO O (9) Ca^{\prime}	100.4(4)	
			$\mathrm{CaO}(9) T(2)$	* 90.4(3)	
			$\mathrm{CaO}(9) T(1)$	* 121.3(2)	
			$T(1) \mathrm{O}(9) T(2)$	125.3(6)	

Balance of the electrostatic valences.

In accordance with the suggestions made above, Table 5 shows a balance of electrostatic valences constructed on the following assumptions:
(i) The coordination number of the calcium ion is six.
(ii) The hydrogen atom is linked to $\mathrm{O}(8)$.

Table 5. Balance of electrostatic valences

	Ca	H	Si	Be	Al	Total
$\mathrm{O}(1)$			2×1			2
$\mathrm{O}(2)$	$2 \times \frac{1}{3}$		1		$2-\frac{1}{3}$	
$\mathrm{O}(3)$	$\frac{1}{3}$		1		$\frac{3}{4}$	$2+\frac{1}{12}$
$\mathrm{O}(4)$	$\frac{1}{3}$		1		$\frac{3}{4}$	$2+\frac{1}{1} \frac{1}{2}$
$\mathrm{O}(5)$			2×1			2
$\mathrm{O}(6)$			2×1			
$\mathrm{O}(7)$	$\frac{1}{3}$		1	$\frac{1}{2}$		$2-\frac{1}{6}$
$\mathrm{O}(8)$	$2 \times \frac{1}{3}$	1		$\frac{1}{2}$		$2+\frac{1}{2}$
$\mathrm{O}(9)$	$2 \times \frac{1}{3}$		1	$\frac{1}{2}$		$2+\frac{1}{6}$

Although the balance is hardly satisfactory for $\mathrm{O}(2)$, the $\mathrm{Si}-\mathrm{O}$ and $\mathrm{Ca}-\mathrm{O}$ distances for this atom are found to be by far the shortest ones in this structure; so the figure quoted in Table 5 for $\mathrm{O}(2)$ should be increased, and this results in a satisfactory balance for this atom. Also the $\mathrm{Ca}-\mathrm{O}$ (7) distance is very short, therefore the figure quoted for $\mathrm{O}(7)$ should be increased too.

Positions of the hydrogen atoms

The hypothesis has been put forward that one hydroxyl is linked to each beryllium atom, on the basis of the chemical formula of bavenite; the oxygen involved is assumed to be $\mathrm{O}(8)$ because it corresponds to a break in the tetrahedral framework. The satisfactory balance of charges around $O(8)$ is founded on this statement and affords a very important confirmation of the hypothesis; otherwise the sum of charges around $\mathrm{O}(8)$ would have been inadmissibly low ($1+\frac{1}{6}$).
Some further evidence for this statement can be derived from the final three-dimensional difference synthesis, computed in the structure voids that may be occupied by the hydrogen atoms. This synthesis shows a maximum - the highest - with coordinates ($x / a, y / b$, $z / c)=(0 \cdot 100,0 \cdot 267,0 \cdot 250)$, corresponding to an $\mathrm{O}(8)-\mathrm{H}$ distance of about $1.2 \AA$ and to an angle $\mathrm{Be}-\mathrm{O}(8)-\mathrm{H}$ of about 112°.

Description of the structure

Bavenite displays a type of framework unknown till now. For descriptive purpose it is convenient to include Al and Be in the system of linked tetrahedra; in this way the crystal structure approaches without reaching the rank of a tetrahedral framework. In fact the ratio between the number of tetrahedral cations and that of oxygen anions is 13:28; only two out of fourteen oxygen atoms interrupt the three-dimensional linking of tetrahedra: they are $O(2)$ and $O(8)$ and belong to Be and $T(3)$ respectively (the first of them is linked to a hydrogen atom). The tetrahedra that break the framework are disposed in a comparable way in the structure; both have the not-linking $T-\mathrm{O}$ bond nearly parallel to \mathbf{b} and lying on a mirror plane; as a
difference $\mathrm{Be}-\mathrm{O}(8)$ and $T(3)-\mathrm{O}(2)$ have opposite directions [Fig.3(f)].

Perhaps the main feature of this crystal structure is a fourfold chain of tetrahedra developing along the b axis and built up by four pyroxene-like chains connected circularly between themselves. The projection of the fourfold chain along \mathbf{b}, that surrounds the point of coordinates ($\frac{1}{4}$, $\frac{1}{2}$) [Fig.3(a)] displays circularly: chain I, chain II, chain I^{\prime}, chain II^{\prime}, where I and II denote equivalent chains; I and I^{\prime} are related by a diad axis, II and II' by a b-glide plane. Chain I is built up from equivalent tetrahedra: $\cdots-T(6)-\mathrm{O}(6)-T(6)-\cdots$, that are repeated by the b-glide plane; it can be seen clearly in Fig. $3(b)(d)$ and (e). Chain II is composed of the $-\mathrm{Al}-\mathrm{O}(4)-T(5)-$ unit that repeats for simple translation along b; it appears in Fig.3(b), and also in Fig. $3(d)$ behind chain I; in this chain the cations are all disposed on the diads. Within the fourfold chain a ring of six silicon atoms arises; it can be seen in Fig.3(a). The unit translation along b, $5.005 \AA$, is related to the existence of these chains.

Two different fourfold chains are connected along \mathbf{c} through two beryllium tetrahedra as bridges, forming a system $S(1)$ of six-membered rings running zigzag along b. Moreover two different fourfold chains are connected along a through two $T(3)$ tetrahedra as bridges, forming a system of rings $S(2)$ of alternately four and eight tetrahedra running parallel to \mathbf{b}. Each one of these systems is cut in the middle by a mirror plane parallel to \mathbf{b}; the mirror planes are perpendicular and cross in $T(1)$.

These two systems of rings, $S(1)$ and $S(2)$, are connected through rings of six non-equivalent tetrahedra, shown in Fig. 3(f); the calcium atoms occupy the channels formed by them along \mathbf{b}. Four calcium polyhedra are interconnected, related by the mirror planes crossing at $T(1)$; no connections exist between calcium polyhedra along \mathbf{b}.

In this crystal structure there are no empty channels and therefore bavenite has no zeolitic character; its density is comparatively high, over $2.71 \mathrm{~g} . \mathrm{cm}^{-3}$.

Cleavage

The $\{001\}$ cleavage is very good and can readily be explained from consideration of Fig.3(a). A plane z / c $\simeq \frac{1}{5}$ [approximately between the z coordinates of $\mathrm{O}(7)$ and $\mathrm{O}(8)$] cuts a minimum number of $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ bonds, no $\mathrm{Ca}-\mathrm{O}$ bonds and many $\mathrm{Be}-\mathrm{O}$ bonds. The good $\{100\}$ cleavage can be explained in a similar way.

Diadochy between the tetrahedral cations

The numbers of beryllium and aluminum atoms in the chemical formula of the specimen available to us are nearly integers - with a small excess of beryllium and a corresponding defect of aluminum; moreover, according to this structure analysis, Al and Be occupy independent positions in the unit cell. Thus a conclusive discussion of the Be-Al diadochy is not possible here. The excess of beryllium can enter the position
$T(4)$: some evidence arises from the short average $\mathrm{Al}-\mathrm{O}$ distance. The specimens richer in beryllium have about one half of the aluminum replaced by beryllium; this substitution does not result in a variation of the electrostatic field around the oxygen atoms involved, $O(3)$ and $O(4)$, only if the hydrogen that accompanies beryllium distributes itself statistically between them. There is also much room around $\mathrm{O}(2)$ suitable for occupancy by hydrogen, without any need of a statistical distribution among more than one position; this could be a likely way because in many respects $\mathrm{O}(2)$ and $O(8)$, or $T(3)$ and Be play similar roles in the structure, as pointed out above in this discussion. In this case the beryllium to aluminum substitution would result in a clear improvement of the sum of the electrostatic valences around $\mathrm{O}(2)$ quoted in Table 5, because the hydrogen that accompanies the beryllium excess would add its contribution to the latter sum. An increase of the distances $T(3)-\mathrm{O}(2)$ and $\mathrm{Ca}-\mathrm{O}(2)$ parallel to the increase of the beryllium to aluminum substitution would strengthen this hypothesis, as an evidence that the shortness of these distances is less and less necessary to obtain the balance of the electrostatic valences around $\mathrm{O}(2)$.

There is no clear evidence to choose between these hypotheses; the diadochy could be even more complicated and involve also the silicon atoms: for example, diadochy between $T(1)$ and Al cannot be excluded to a small extent, owing to the long average $T(1)-\mathrm{O}$ distance and to the short Al-O one. However these open
questions have been discussed here to point out that a comparison of the structure of this bavenite with that of a beryllium-rich one would be of interest in order to understand the details of diadochy between the tetrahedrally coordinated cations.

Chemical formula

The up-to-date more reasonable chemical formula of bavenite appears to be:

$$
\mathrm{Ca}_{4}(\mathrm{BeOH})_{2+x} \mathrm{Al}_{2-x} \mathrm{Si}_{9} \mathrm{O}_{26-x},
$$

where $0 \cdot 10 \leq x \leq 0 \cdot 84$.
We wish to thank Professor F.Sgarlata who kindly made available to us his program for three-dimensional refinement by the least-squares method.

References

Ahmed, F. R. \& Cruickshank, D. W. J. (1953). Acta Cryst. 6, 385.
Belov, N. V. (1961). Crystal Chemistry of Large-Cation Silicates (English translation), p.3. New York: Consultants Bureau (1964). 3.
Berry, L. G. (1963). Amer. Min. 48, 1166.
Cruickshank, D. W. J. (1949). Acta Cryst. 2, 65, 154.
Darlow, S. F. (1960). Acta Cryst. 13, 683.
Hamilton, W. C. (1957). Acta Cryst. 10, 629.
Moore, F. H. (1963). Acta Cryst. 16, 1169.
Sakurai, T. (1962). Acta Cryst. 15, 443.
Smith, D. K. (1959). Acta Cryst. 12, 479.

Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1966). 20, 309
Crystal data for (-)-threo-12,13-dihydroxyoleic acid. By David A. Lutz and William E. Scott, Eastern Utilization Research and Development Division, Agricultural Research Service, U.S. Department of Agriculture, Philadelphia, Pa. 19118, U.S.A.
(Received 20 August 1965)

The present study was undertaken to obtain crystal data on (-)-threo-12,13-dihydroxyoleic acid, $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{4}$, which was prepared by acetolysis of the seed oil of Vernonia anthelmintica (L.) Willd. (Scott, Krewson \& Riemenschneider, 1962). The compound was further purified [as evidenced by chemical analysis ($\mathrm{C} 68.5, \mathrm{H} 10.8 \%$) and melting point ($63-$ $63 \cdot 5^{\circ} \mathrm{C}$)] and single crystals were produced by a series of slow crystallizations from acetone at room temperature. Cell constants were determined from various oscillation and Weissenberg photographs, using $\mathrm{Cu} K \alpha$ radiation ($\lambda=$ $1 \cdot 5418 \AA$). The density was measured by flotation. The space group was determined from systematic extinctions ($h 00$, $O k O$ and $O O l$ absent for h, k or l odd). The crystal data are
as follows: $a=5 \cdot 05 \pm 0 \cdot 01, b=8 \cdot 51 \pm 0 \cdot 02, c=44 \cdot 66 \pm 0 \cdot 05 \AA$, $U=1920 \AA^{3}, \quad z=4, D_{x}=1.088 \mathrm{~g} . \mathrm{cm}^{-3}, D_{m}=1.085 \mathrm{~g} . \mathrm{cm}^{-3}$; space group, $P 2_{1} 2_{1} 2_{1}$.

No further work on this compound is contemplated at present.

The authors would like to thank Dr Thomas H. Doyne of Villanova University for his assistance.

References

Scott, W. E., Krewson, C. F. \& Riemenschneider, R. W. (1962), Chem. and Ind., 2038.

